Problem 19

If $f_{0}(x)=x^{2}$ and $f_{n+1}(x)=f_{0}\left(f_{n}(x)\right)$ for $n=0,1,2, \ldots$, find a formula for $f_{n}(x)$.

Solution

Write out the first few formulas using the given definitions and try to find a pattern.

$$
\begin{aligned}
f_{0}(x) & =x^{2} \\
f_{1}(x) & =f_{0+1}(x)=f_{0}\left(f_{0}(x)\right)=\left(x^{2}\right)^{2}=x^{4} \\
f_{2}(x) & =f_{1+1}(x)=f_{0}\left(f_{1}(x)\right)=\left(x^{4}\right)^{2}=x^{8} \\
f_{3}(x) & =f_{2+1}(x)=f_{0}\left(f_{2}(x)\right)=\left(x^{8}\right)^{2}=x^{16} \\
f_{4}(x) & =f_{3+1}(x)=f_{0}\left(f_{3}(x)\right)=\left(x^{16}\right)^{2}=x^{32} \\
& \vdots \\
f_{n}(x) & =f_{(n-1)+1}(x)=f_{0}\left(f_{n-1}(x)\right)=\left(x^{2^{n}}\right)^{2}=x^{2\left(2^{n}\right)}=x^{2^{n+1}}
\end{aligned}
$$

